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Abstract. The dynamical critical exponent z of the Ising antiferromagnet under the constraint of a fixed
zero magnetization is verified by Monte Carlo simulations to be compatible with that of the usual Glauber
dynamics of model A, while for positive magnetization the exponent seems different. We also determine
the diffusivity of the magnetization and finite size effects.

PACS. 05.50.+q Lattice theory and statistics; Ising problems – 05.60.+w Transport processes: theory

The kinetics of the normal Ising model without conser-
vation laws (model A according to the standard classifi-
cation [1]) is well studied in two and more dimensions [2];
and this also holds for the Kawasaki dynamics of an Ising
ferromagnet with conserved magnetization m (model B).
Less known is the case of an antiferromagnet when we
keep the magnetization m (i.e. not the order parame-
ter) fixed [3]. This case, perhaps together with an Ising
ferromagnet at conserved energy, is model C. Renormal-
ized field theories are in preparation [4] for finite-size dy-
namics in model C, analogous to those for model A [5].
Qualitatively, Fisher renormalisation is expected to ex-
plain changes in the critical exponents [6]. Reference [7]
reviews older work for bulk systems, while reference [8] is
a more recent dynamical study of this bulk model (but
different from ours). Thus we simulate here the antiferro-
magnet with a fixed magnetization for future comparison
with field theories. At zero magnetization, the Neel tem-
perature TN of the antiferromagnet agrees with the Curie
temperature Tc of the corresponding ferromagnet, while
for a fixed m = 0.1 we found TN ' 0.93Tc on the square
lattice and TN(m = 0.08) = 0.987± 0.001Tc on the simple
cubic lattice. Here and later, Tc refers to the m = 0 Curie
and Neel temperature.

As in Kawasaki spin exchange dynamics of ferromag-
nets, two neighbouring spins S = ±1 exchange their ori-
entation according to Boltzmann’s normalized probabil-
ity provided they are antiparallel. Initially, exactly half
of the spins (or another predetermined fraction) are up,
and the others are down. Right at T = TN the staggered
magnetization (order parameter) ms should decay with
time t as 1/tβ/νz where z is the dynamic critical exponent
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(defined through: time proportional to length z), and β, ν
are the usual static exponents of the Ising model. Above
TN we expect asymptotically a simple exponential decay
∝ exp(−t/τ). One Cray-T3E processor dealt with more
than one spin pair per microsecond in geometric paral-
lelization of our L×L×(L+1) or L×(L+1) lattices. Three
lattice lines or planes had to be shifted to neighbouring
processors in both directions of our ring topology, dur-
ing each sweep through the lattice, making parallelization
with a large number of processors difficult.

Figure 1 shows bulk behaviour of large systems at and
above TN at m = 0 in two and three dimensions. Right
at TN we find z ' 2.1 ± 0.1 in two and three dimensions,
compatible with model A [2], while above TN we find τ '
2000 on the square lattice with T/Tc = 1.02 and τ = 250±
15 on the simple cubic lattice at T/Tc = 1.01. Form = 0.08
in three dimensions at the Tc of the m = 0 system, and
thus about 1.3 percent above the shifted TN(m), we found
a relaxation time of 190 ± 10 for L = 1023. These times
may serve to normalize field-theoretical times [4]. Figure
2 shows the phase diagram, TN versus m.

For finite sizes one expects a decay of the staggered
magnetization ∝ exp(−t/τ(L)) where τ(L) ∝ Lz at T =
TN(m). In three dimensions we find in Figure 3 z ' 2
for T = Tc and m = 0, consistent with model A. (The
discrepancy between the expected z = 2.05 and our slope
1.96 shows the errors in our simulation, partly due to the
complicated algorithm which is much slower than that
for model A.) For m = 0.08 we get instead z ' 2.28,
presumably different from the 2.05 of model A [2] and
roughly compatible with the theoretical [1,3] prediction
z = 2 + α/ν ' 2.158. In two dimensions at m = 0 and
T = Tc (Fig. 3) gives z = 2.15 consistent with
model A [2,9].
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Fig. 1. Order parameter relaxation in two (a, b) and three (c, d) dimensions at (a, c; log-log plots) and slightly above (b, d;
semilogarithmic plots) the critical temperature, for lattices containing more than 109 spins. (In parts a and b, medium size for
long times and large size for short times. The vertical axes vary from 1 down to 0.5 in a and 0.3 in b.) The dashed lines give
the slopes expected for model A (parts a and c), τ = 2000 (part b), and τ = 250 (part d). Staggered magnetization at: (a)
T = Tc for 10031*10032 and 38399*38400, m = 0; (b) T/Tc = 1.02 for 14975*14976 and 38399*38400, m = 0; (c) T = Tc for
1023*1023*1024, m = 0 and 0.95/x0.25 ; (d) T/Tc = 1.01 for 1151*1151*1152, m = 0 and 0.27/exp(t/250).

Fig. 2. Neel temperature TN(m)/Tc against m in three dimen-
sions.

Fig. 3. The order parameter relaxation time τ at TN versus
the system size L is shown for two dimensions (�, m = 0) and
three dimensions (+ for m = 0, squares for m = 0.08). The
best fit lines (from least square fitting) are also shown.
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Fig. 4. (a) The order parameter relaxation time τ against
(T/TN − 1) is shown for two sizes L = 15 and L = 71 in
three dimensions for zero and nonzero magnetization. (b) τ/Lz

with z(m = 0) = 2.0, z(m = 0.08) = 2.3 against
y = (T/TN − 1)L

1/ν for the same sizes are shown to be com-
patible with finite-size scaling hypothesis.

For m = 0 and 0.08 we have also studied the be-
haviour of τ with (T − TN)/TN. Figure 4a shows the vari-
ation of τ for two system sizes L = 15 and L = 71.
The curvature in the log-log plot clearly decreases with
increasing system size. We have also plotted τ/Lz against
L1/ν(T − TN)/TN for the same sizes in Figure 4b show-
ing that the data is compatible with the scaling form
τ = Lzf(L1/ν(T − TN)/TN). These data are specially rel-
evant for comparison with the field theory studies.

Even for a constant magnetization as in this model,
one can check for the diffusion of m, similar to heat con-
duction in a ferromagnet with conserved energy. As an al-
ternative to Fourier transformation for the structure fac-
tor, we approximated the field theoretical approach [4]
and assumed an initial magnetization density m(x, t =
0) = m0 + m1 sin(2π(x − 1)/(L − 1)), which means we
started with the smallest wavevector k = 2π/(L − 1) in
the x-direction that fits into our lattice. Then the overlap

Fig. 5. (a) The relaxation time τd for the diffusion of the
magnetization is shown to vary as L2 (m = 0.08, T = TN).
(b) τd/L

2 against L shows only small deviations from constant
behaviour. (c) Same data plotted as τ/L2+α/ν versus L. Now
the variation is stronger but monotonic.
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ψ =
∑
x(m(x, t) − m0)(m(x, 0) − m0)) decays as

exp(−Dk2t) = exp(−t/τd), where D is the spin diffusiv-
ity we are looking for. For m = 0.08, Figures 5 show our
results for intermediate system sizes and the finite-size
scaling behaviour, at TN(m). The corrections to the lead-
ing power law (as a function of size) are small if we look
at Figure 5b but large if we look at Figure 5c; the latter
one presumably corresponds to the asymptotically correct
behaviour. The reason for the more constant behavior in
Figure 5b is not clear at present.
In summary, we confirmed theoretical expectations for

bulk behaviour in model C and found some finite-size ef-
fects for diffusion.

Note added in proofs

Different exponents were found for Ising ferromagnets with
exactly conserved energy (non-ergodic q2r cellular autom-
ata simulation): D. Stauffer, Int. J. Mod. Phys. C 7 (in
press).
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